Template Matching and Change Point Detection by M-Estimation

نویسندگان

چکیده

We consider the fundamental problem of matching a template to signal. do so by M-estimation, which encompasses procedures that are robust gross errors (i.e., outliers). Using standard results from empirical process theory, we derive convergence rate and asymptotic distribution M-estimator under relatively mild assumptions. also discuss optimality estimator, both in finite samples minimax sense large-sample limit terms local minimaxity relative efficiency. Although most paper is dedicated study basic shift model context random design, many extensions towards end paper, including more flexible templates, fixed designs, agnostic setting, more.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Change Point Detection by Sparse Parameter Estimation

The contribution is focused on change point detection in a one-dimensional stochastic process by sparse parameter estimation from an overparametrized model. A stochastic process with change in the mean is estimated using dictionary consisting of Heaviside functions. The basis pursuit algorithm is used to get sparse parameter estimates. The mentioned method of change point detection in a stochas...

متن کامل

Cubelet Detection and Localization by Template Matching

We describe a method for detecting and localizing Modular Robotics Cubelets in a scene, for use as a subsystem in a system for autononmous assembly of Cubelets constructions using a robotic arm and grasper. We use a camera mounted over the work surface. Our method returns two-dimensional position and angle of rotation as well as the type of Cubelet. We obtain position and rotation using templat...

متن کامل

M-Statistic for Kernel Change-Point Detection

Detecting the emergence of an abrupt change-point is a classic problem in statistics and machine learning. Kernel-based nonparametric statistics have been proposed for this task which make fewer assumptions on the distributions than traditional parametric approach. However, none of the existing kernel statistics has provided a computationally efficient way to characterize the extremal behavior ...

متن کامل

Multiple Change Point Detection by Sparse Parameter Estimation

The contribution is focused on multiple change point detection in a onedimensional stochastic process by sparse parameter estimation from an overparametrized model. Stochastic process with changes in the mean is estimated using dictionary consisting of Heaviside functions. The basis pursuit algorithm is used to get sparse parameter estimates. Some properties of mentioned method are studied by s...

متن کامل

Non-parametric change-point detection using string matching algorithms

Given the output of a data source taking values in a finite alphabet, we wish to detect change-points, that is times when the statistical properties of the source change. Motivated by ideas of match lengths in information theory, we introduce a novel non-parametric estimator which we call CRECHE (CRossings Enumeration CHange Estimator). We present simulation evidence that this estimator perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2022

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2021.3112680